If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-16b+25=0
a = 1; b = -16; c = +25;
Δ = b2-4ac
Δ = -162-4·1·25
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{39}}{2*1}=\frac{16-2\sqrt{39}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{39}}{2*1}=\frac{16+2\sqrt{39}}{2} $
| 2x+7(4x)=15 | | 3x2+10x+5=0 | | x-2/2=3 | | 4x^2-65x+11=0 | | 3x+1+29=180 | | 4x²-65x+11=0 | | 6x+2+22=90 | | 2|x+5=6 | | 24+2x=26x | | x/6-x/7=-14 | | 5x·10=50 | | 3r+24/9=3r-6/3 | | 125/27-5(x+3)^2/3=0 | | 23=4(2p−3)+3 | | 20/x=16/5 | | x=0.0088(( | | 2x^2+43x=-40-5x^2 | | 0.16(y-3)+0.12y=0.08y-0.01(40) | | x=0.0088(x+200) | | P(x)=-x-x+12 | | 25x^2-40x-27=0 | | 4(6x+1=24x+4 | | 0.11x+3.97=0.07x+3.85 | | 0.10(y-8)+0.08y=0.16y-0.03(20) | | 5(2l−5)+3l=1 | | .7x-3.5=-1.4 | | ((2x-5)/7)+x=3 | | x+0.13x=400 | | x-0.13x=400 | | 2x+5×=146 | | x+0.83x=400 | | (2x+20)^2=100 |